A class of discontinuous Petrov-Galerkin methods. Part IV: The optimal test norm and time-harmonic wave propagation in 1D

نویسندگان

  • J. Zitelli
  • Ignacio Muga
  • Leszek F. Demkowicz
  • Jayadeep Gopalakrishnan
  • David Pardo
  • Victor M. Calo
چکیده

The phase error, or the pollution effect in the finite element solution of wave propagation problems, is a well known phenomenon that must be confronted when solving problems in the highfrequency range. This paper presents a new method with no phase errors for one-dimensional (1D) time-harmonic wave propagation problems using new ideas that hold promise for the multidimensional case. The method is constructed within the framework of the Discontinuous Petrov-Galerkin (DPG) method with optimal test functions. We have previously shown that such methods select solutions that are the best possible approximations in an energy norm dual to any selected test space norm. In this paper, we advance by asking what is the optimal test space norm that achieves error reduction in a given energy norm. This is answered in the specific case of the Helmholtz equation with L2-norm as the energy norm. We obtain uniform stability with respect to the wave number. We illustrate the method with a number of 1D numerical experiments, using discontinuous piecewise polynomial hp spaces for the trial space and its corresponding optimal test functions computed approximately and locally. A 1D theoretical stability analysis is also developed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Class of Discontinuous Petrov-Galerkin Methods. Part IV: Wave Propagation

The phase error, or the pollution effect in the finite element solution of wave propagation problems, is a well known phenomenon that must be confronted when solving problems in the high-frequency range. This paper presents a new method with no phase errors for onedimensional time-harmonic wave propagation problems. The method is constructed within the framework of the Discontinuous Petrov-Gale...

متن کامل

Plane Wave Discontinuous Galerkin Methods : Analysis of The

We are concerned with a finite element approximation for time-harmonic wave propagation governed by the Helmholtz equation. The usually oscillatory behavior of solutions, along with numerical dispersion, render standard finite element methods grossly inefficient already in medium-frequency regimes. As an alternative, methods that incorporate information about the solution in the form of plane w...

متن کامل

A Class of Discontinuous Petrov-galerkin Methods. Part Ii: Optimal Test Functions

We lay out a program for constructing discontinuous Petrov-Galerkin (DPG) schemes having test function spaces that are automatically computable to guarantee stability. Given a trial space, a DPG discretization using its optimal test space counterpart inherits stability from the well-posedness of the undiscretized problem. Although the question of stable test space choice had attracted the atten...

متن کامل

Non-linear Petrov-Galerkin methods for reduced order hyperbolic equations and discontinuous finite element methods

A new Petrov-Galerkin approach for dealing with sharp or abrupt field changes in Discontinuous Galerkin (DG) reduced order modelling (ROM) is outlined in this paper. This method presents a natural and easy way to introduce a diffusion term into ROM without tuning/optimising and provides appropriate modeling and stablisation for the numerical solution of high order nonlinear PDEs. The approach i...

متن کامل

A Space-Time Petrov-Galerkin Certified Reduced Basis Method: Application to the Boussinesq Equations

We present a space-time certified reduced basis method for long-time integration of parametrized noncoercive parabolic equations with quadratic nonlinearity. We first consider a finite element discretization based on discontinuous Galerkin time integration and introduce associated Petrov-Galerkin space-time trialand test-space norms which yields optimal and asymptotically mesh independent stabi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 230  شماره 

صفحات  -

تاریخ انتشار 2011